学术论文: |
1. YF Zhu, Q Jiang, Edge or interface effect on bandgap openings in graphene nanostructures-A thermodynamic approach, Coordination Chemistry Reviews, 2016, 326:1-33. (IF=13.324)
2. Y.F. Zhu, X.Y. Lang, W.T. Zheng, Q. Jiang, Electron Scattering and Electrical Conductance in Polycrystalline Metallic Films and Wires: The Impact of Grain Boundary Scattering Made by the Melting Point, ACS Nano, 4 (2010) 3781-3788. (IF=13.942)
3. Y.F. Zhu, X.Y. Lang, Q. Jiang, Alloying Effect on Bandgap Energy of Nanosemiconductor Alloys, Advanced Functional Materials, 18 (2008) 1422-1429. (IF=12.124)
4. N Zhao, Y Zhu, Q Jiang, Novel Electronic Properties of Two-Dimensional AsxSby Alloys Studied by Using DFT, Journal of Materials Chemistry C, 2018. (IF=5.256)
5. YR Wang, K Tang, X Yao, B Jin, YF Zhu, Interface effect on the cohesive energy of nanostructured materials and substrate-supported nanofilms, Dalton Transactions, 2018. (IF=4.029)
6. YF Zhu, N Zhao, B Jin, M Zhao, Q Jiang, High thermal stability of core-shell structures dominated by negative interface energy, Physical Chemistry Chemical Physics, 2017, 19(13) :9253-9260. (IF=4.123)
7. Z Wen, J Luo, Y Zhu, Q Jiang, Cohesive-Energy-Resolved Bandgap of Nanoscale graphene Derivatives, Chemphyschem, 2015, 15(12) :2563-2568. (IF=3.075)
8. YF Zhu, QQ Dai, WT Zheng, Q Jiang, Gap openings in graphene regarding interfacial interaction from substrates, Physical Chemistry Chemical Physics, 2014, 16(12) :5600-4. (IF=4.123)
9. Y Zhu, N Zhao, J Lian, Q Jiang, Tandem Photovoltaic Devices Employing Nanoarray graphene-Based Sheets, Journal of Physical Chemistry C, 2014, 118(5) :2385–2390. (IF=5.256)
10. YF Zhu, QQ Dai, M Zhao, Q Jiang, Physicochemical insight into gap openings in graphene, Scientific Reports, Article number: 1524 (2013). (IF=4.259)
11. Y Zhu, J Lian, Q Jiang, Role of Edge Geometry and Magnetic Interaction in Opening Bandgap of Low-Dimensional graphene, Chemphyschem, 2014, 15(5):958-965. (IF=3.075)
12. YF Zhu, QQ Dai, M Zhao, Q Jiang, Physicochemical insight into gap openings in graphene, Scientific Reports, 2013, 3(3):1524. (IF=4.259).
13. Zhu Y.F., Liu D., Wen Z., Jiang, Q., Self-formation of nanocomposite Cu/Al2O3 thin films on CuAl dilute alloys by annealing in inert atmospheres, JOURNAL OF APPLIED PHYSICS, 2011, 110(2):023525. (IF=2.588)
14. Zhu Y.F., Zheng W.T., Jiang Q., Distinct Young's modulus of nanostructured materials in comparison with nanocrystals, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13(48):21328-21332. (IF=4.123)
15. YF Zhu, JS Lian, Q Jiang, Modeling of the Melting Point, Debye Temperature, Thermal Expansion Coefficient and the Specific Heat, J. Phys. Chem. C 2009, 113, 16896. (IF=4.536)
16. Zhu Y.F., Zheng W.T., Jiang Q., Modeling lattice expansion and cohesive energy of nanostructured materials, APPLIED PHYSICS LETTERS, 2009, 95(8):083110. (IF=3.411)
17. Zhu YF, Lian JS, Jiang Q, Re-examination of Casimir limit for phonon traveling in semiconductor nanostructures, Applied Physics Letters, 2008, 92(11). (IF=3.411)
18. YF Zhu, WT Zheng, Q Jiang, Modeling Lattice Expansion and Cohesive Energy of Nanostructured Materials, Appl. Phys. Lett. 2008, 92, 113101. (IF=3.411)
19. Zhu YF, Mimura K, Lim JW, Isshiki M, Jiang Q, Brief review of oxidation kinetics of copper at 350 degrees C to 1050 degrees C, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2006, 37A(4):1231-1237.
20. Zhu Y, Mimura K, Isshiki M, Influence of oxide grain morphology on formation of the CuO scale during oxidation of copper at 600-1000 degrees C, Corrosion Science, 2005, 47(2):537-544. (IF=5.245) |