学术论文: |
近五年作为第一/通讯作者在Composites Part B: Engineering (IF=11.322),Carbon (IF=11.307), Composites Part A: Applied Science and Manufacturing (IF= 9.463), Materials & Design (IF= 9.417)等国际期刊上发表SCI中科院分区二区以上论文32余篇(其中一区22篇),其中影响因子大于10的SCI论文5篇,ESI高被引论文3篇,成果如下(按时间倒排序, *通讯作者): [1] T.-S. Liu, F. Qiu*, H.-Y. Yang*, S. Liu, Q.-C. Jiang, L.-C. Zhang*, Exploring the potential of FSW-ed Al–Zn–Mg–Cu-based composite reinforced by trace in-situ nanoparticles in manufacturing workpiece with customizable size and high mechanical performances, Composites Part B: Engineering (2023) 110425. (IF=11.322) [2] C.-D. Li, F. Qiu, H.-Y. Yang*, F. Chang, T.-Y. Li, H. Zhang, Q.-C. Jiang, Role and mechanism of innovative addition process of trace nano-TiCp in microstructure manipulation and significant mechanical properties enhancement of H13 steels, Journal of Materials Processing Technology 311 (2023) 117819. [3] B.-X. Dong, Q. Li, H.-Y. Yang*, T.-S. Liu, F. Qiu*, S.-L. Shu, Q.-C. Jiang, L.-C. Zhang*, Synergistic optimization in solidification microstructure and mechanical performance of novel (TiCxNy−TiB2)p/Al nanocomposites: Design, tuning and mechanism, Composites Part A: Applied Science and Manufacturing 155 (2022) 106843. (高被引论文) [4] Jun-Nan Dai, Shu-Qing Kou, Hong-Yu Yang*, Zheng-Bo Xu, Shi-Li Shu, Feng Qiu, Qi-Chuan Jiang, L.-C. Zhang, High-content continuous carbon fibers reinforced PEEK matrix composite with ultra-high mechanical and wear performance at elevated temperature, Composite Structures 295 (2022) 115837. [5] S.-S. Li, F. Qiu, H.-Y. Yang*, S. Liu, T.-S. Liu, L.-Y. Chen, Q.-C. Jiang, Strengthening of dislocation and precipitation for high strength and toughness casting Al–Zn–Mg–Cu alloy via trace TiB2+TiC particles, Materials Science and Engineering: A 857 (2022) 144107. [6] T.-S. Liu, F. Qiu*, H.-Y. Yang*, C.-L. Tan, B.-X. Dong, J.-F. Xie, S.-L. Shu, Q.-C. Jiang, L.-C. Zhang*, Versatility of trace nano-TiC–TiB2 in collaborative control of solidification-rolling-welding microstructural evolution in Al–Mg–Si alloy for enhanced properties, Materials Science and Engineering: A 851 (2022) 143661. [7] X.-Y. Song, Y.-J. Wang, J.-X. Zhang, D.-A. Du, H.-Y. Yang*, L. Zhao, F. Peng*, X. Li*, F. Qiu, Microstructure and mechanical properties of aluminum alloy composites with endogenous nano-TiCp, Ceramics International (2022). [8] Z.-B. Xu, S.-Q. Kou, H.-Y. Yang*, B.-X. Dong, Y. Han, L.-Y. Chen, F. Qiu, Q.-C. Jiang, The effect of carbon source and molar ratio in Fe–Ti–C system on the microstructure and mechanical properties of in situ TiC/Fe composites, Ceramics International 48 (2022) 30418–30429. [9] Y.-F. Yan, S.-Q. Kou, H.-Y. Yang*, S.-L. Shu, J.-B. Lu, Effect mechanism of mono-particles or hybrid-particles on the thermophysical characteristics and mechanical properties of Cu matrix composites, Ceramics International 48 (2022) 23033–23043. [10] X.-Y. Yao, F. Qiu*, H.-Y. Yang*, S.-L. Shu, T.-T. Li, Q.-C. Jiang, Role of in-situ nanocrystalline in solidification behaviors manipulation, microstructure refinement, and mechanical properties enhancement of Al-Cu4/Al-Mg1 alloys, Materials Characterization 194 (2022) 112408. [11] F. Zhang, F.-J. Shi, B.-X. Dong*, H.-Y. Yang*, Effect of Ta, Nb and Zr additions on the microstructures and mechanical properties of 70 vol% TiC/Al cermets, Ceramics International 48(21) (2022) 32479-32490. [12] H. Zhang, F. Qiu*, H.-Y. Yang*, W.-X. Wang, S.-L. Shu, Q.-C. Jiang, Microstructure manipulation mechanism and mechanical properties improvement of H13 steel via trace nano-(TiC+TiB2) particles, Materials Characterization 188 (2022) 111924. [13] Yang H-Y, Yan Y-F, Liu T-S, Dong B-X, Chen L-Y, Shu S-L, et al. Unprecedented enhancement in strength-plasticity synergy of (TiC+Al6MoTi+Mo)/Al cermet by multiple length-scale microstructure stimulated synergistic deformation. Composites Part B: Engineering. 2021; 225: 109265. (IF=11.322) [14] Yang H-Y, Wang Z, Chen L-Y, Shu S-L, Qiu F, Zhang L-C. Interface formation and bonding control in high-volume-fraction (TiC+TiB2)/Al composites and their roles in enhancing properties. Composites Part B: Engineering. 2021; 209: 108605. (IF=11.322, 高被引论文) [15] Dong B-X, Li Q, Wang Z-F, Liu T-S, Yang H-Y*, Shu S-L, et al. Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution. Composites Part B: Engineering 2021; 217: 108912. (IF=11.322, 高被引论文) [16] Liu T-S, Qiu F, Dong B-X, Geng R, Zha M, Yang H-Y*, et al. Role of Trace Nanoparticles in Establishing Fully Optimized Microstructure Configuration of Cold-rolled Al Alloy. Materials & Design. 2021; 206: 109743. [17] Dong BX, Ma XD, Liu TS, Li Q, Yang HY*, Shu SL, Zhang BQ, Qiu F*, et al. Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles. Journal of the American Ceramic Society. 2021; 104(6): 2820-2835. [18] Qiu F, Zhang H, Li C-L, Wang Z-F, Chang F, Yang H-Y*, et al. Simultaneously enhanced strength and toughness of cast medium carbon steels matrix composites by trace nano-sized TiC particles. Materials Science & Engineering A. 2021; 819: 141485. [19] Zhu L, Qiu F*, Zou Q, Han X, Shu S-L, Yang H-Y*, et al. Multiscale design of α-Al, eutectic silicon and Mg2Si phases in Al-Si-Mg alloy manipulated by in situ nanosized crystals. Materials Science and Engineering: A. 2021; 802: 140627. [20] S.-Q. Kou, Y.-L. Gao, W. Song, H.-L. Zhao, Y.-B. Guo, S. Zhang*, H.-Y. Yang*, Compression properties and work-hardening behavior of the NiAl matrix composite reinforced with in situ TaC ceramic particulates, Vacuum (2021) 110035. [21] Q. Lin*, L. Liu, H. Yang*, L. Li, Wetting of SiC by molten Cu–20Me–2Cr (Me=Ag, Mn, Si, and Sn) alloys at 1373 K, Vacuum 185 (2021) 110002. [22] Yang H-Y, Cai Z-J, Zhang Q, Shao Y, Dong B-X, Xuan Q-Q, et al. Comparison of the effects of Mg and Zn on the interface mismatch and compression properties of 50 vol% TiB2/Al composites. Ceramics International. 2021;47(15):22121-9. [23] Yang HY, Wang Z, Yue X, Ji PJ, Shu SL. Simultaneously improved strength and toughness of in situ bi-phased TiB2–Ti(C,N)–Ni cermets by Mo addition. Journal of Alloys and Compounds. 2020;820:153068. [24] Lin Q*, Yang F, Yang H-Y*, Sui R, Shi Y, Wang J. Wetting of graphite by molten Cu–xSn–yCr ternary alloys at 1373 K. Carbon. 2020; 159: 561-569. (IF=11.307) [25] Yang H-Y, Yue X, Wang Z, Shao Y, Shu S. Strengthening mechanism of TiC/Al composites using Al-Ti-C/CNTs with doping alloying elements (Mg, Zn and Cu). Journal of Materials Research and Technology. 2020;9(3):6475-87. [26] Li Q, Qiu F*, Dong B-X, Yang H-Y*, Shu S-L, Zha M, et al. Investigation of the influences of ternary Mg addition on the solidification microstructure and mechanical properties of as-cast Al–10Si alloys. Materials Science and Engineering: A. 2020; 798: 140247. [27] Li T-T, Yang H-Y*, Miao T-J, Peng H-L, Chen X, Zhu L, Duan T-T, Qiu F*, et al. Microstructure refinement and strengthening of Al–Cu alloys manipulated by nanocrystalline phases formed by in situ crystallization of Ni–Nb–Ti metallic glasses in melt. Journal of Materials Research and Technology. 2020; 9(3): 4494-4505. [28] Liu S, Zhang X, Peng H-L, Han X, Yang H-Y*, Li T-T, Zhu L, Zhang S, Qiu F*, et al. In situ nanocrystals manipulate solidification behavior and microstructures of hypereutectic Al-Si alloys by Zr-based amorphous alloys. Journal of Materials Research and Technology. 2020;9(3):4644-4654. [29] X. Han, Z. Zhang, Y. Rong, S.J. Thrush, G.C. Barber, H. Yang*, F. Qiu*, Bainite kinetic transformation of austempered AISI 6150 steel, Journal of Materials Research and Technology 9(2) (2020) 1357-1364. [30] X. Han, Z. Zhang, Y. Pan, G.C. Barber, H. Yang*, F. Qiu*, Sliding Wear Behavior of Laser Surface Hardened Austempered Ductile Iron, Journal of Materials Research and Technology 9 (2020) 14609-14618. [31] X. Han, Z. Zhang, J. Hou, S.J. Thrush, G.C. Barber, Q. Zou, H. Yang*, F. Qiu*, Tribological behavior of heat treated AISI 6150 steel, Journal of Materials Research and Technology 9(6) (2020) 12293-12307. [32] Yang H-Y, Wang Z, Shu S-L, Lu J-B. Effect of Ta addition on the microstructures and mechanical properties of in situ bi-phase (TiB2-TiCxNy)/(Ni-Ta) cermets. Ceramics International. 2019;45(4):4408-17. |
授权专利: |
1. 杨宏宇, 刘林, 邱丰, 舒世立, 陈靓瑜, 邵勇, 石凤健. 原位内生纳米(TiC-Al3Ti)/Al多孔复合材料及其制备方法. 中国发明专利, ZL201811609107.0, 授权日期: 2021.01.05. 2. 杨宏宇, 刘林, 邱丰, 舒世立, 陈靓瑜, 邵勇, 黄忠富. 纳米碳管和纳米TiC混杂增强铝基复合材料及其制备方法. 中国发明专利, ZL201811609884.5, 授权日期: 2021.06.01. 3. 邱丰, 董柏欣, 杨宏宇, 姜启川. 一种基于内生纳米TiCxNy颗粒的陶铝复合材料的制备方法. 中国发明专利, ZL 201811608113.4, 授权日期: 2020.05.22. 4. 邱丰, 佟昊天, 杨宏宇, 舒世立. 一种多尺度陶瓷颗粒混杂高弹性模量高强度铝合金及其制备方法. 中国发明专利, ZL201811608130.8, 授权日期: 2020.03.20. 5. 邱丰, 刘天舒, 杨宏宇, 姜启川. 一种微量微纳米混杂颗粒增强Al-Cu-Mg-Si板材控轧制备方法. 中国发明专利, ZL201811607792.3, 授权日期: 2020.03.20. 6. 邱丰, 佟昊天, 姜启川, 杨宏宇. 一种双尺度陶瓷颗粒混杂高弹性模量高强度铝合金及其制备方法. 中国发明专利, ZL201811608128.0, 授权日期: 2020.03.20. 7. 邱丰, 李强, 杨宏宇, 姜启川. 一种基于多相混杂尺度陶瓷颗粒强化剂强化铝硅合金的方法. 中国发明专利, ZL201811607770.7, 授权日期: 2020.07.03. 8. 邱丰; 刘天舒; 赵建融; 杨宏宇. 熔体内原位微纳米颗粒强化Al-Cu-Mg-Si合金板材的制备方法,中国发明专利,ZL201811607452.0,授权日期: 2020.05.08. 9. 邱丰, 佟昊天, 杨宏宇, 舒世立. 一种多相陶瓷颗粒混杂制备高弹性模量高强度铝合金的方法. 中国发明专利, ZL201811607758.6,授权日期: 2021.02.12. 10. 邱丰, 董柏欣, 姜启川, 杨宏宇. 一种小包内纳米颗粒预分散辅助熔体内均匀分散的方法. 中国发明专利, ZL201811607801.9, 授权日期: 2019.9.10. 11. 邱丰, 刘天舒, 赵建融, 姜启川, 杨宏宇. 一种双向垂直控轧微量TiC增强Al-Cu-Mg合金板材的制备方法. 中国发明专利, ZL201811607780.0, 授权日期: 2019.10.22. 12. 邵勇, 郭平义, 周应国, 杨宏宇, 黄忠富. 一种空心凸齿类锻件的成形方法. 中国发明专利, ZL 201610383398.0, 授权日期: 2017.10.27. |